A Comparative Study on the Thermal Energy Storage Performance of Bio-Based and Paraffin-Based PCMs Using DSC Procedures

Author:

Nazari Sam Mona,Caggiano AntonioORCID,Mankel Christoph,Koenders EddieORCID

Abstract

Thermal-Energy Storage (TES) properties of organic phase change materials have been experimentally investigated and reported in this paper. Three paraffin-based Phase Change Materials (PCMs) and one bio-based PCM are considered with melting temperatures of 24 °C, 25 °C and 26 °C. Sensible heat storage capacities, melting characteristics and latent heat enthalpies of the studied PCMs are investigated through Differential Scanning Calorimetry (DSC) measurements. Two alternative methods, namely the classical dynamic DSC and a stepwise approach, are performed and compared with the aim to eliminate and/or overcome possible measurement errors. In particular, for DSC measurements this could be related to the size of the samples and its representativity, heating rate effects and low thermal conductivity of the PCMs, which may affect the results and possibly cause a loss of objectivity of the measurements. Based on results achieved from this study, clear information can be figured out on how to conduct and characterize paraffin and bio-based PCMs, and how to apply them in TES calculations for building applications and/or simulations. It is observed that both paraffinic and bio-based PCMs possess a comparable TES capacity within the selected phase transition temperature, being representative for the human thermal comfort zone. The phase change of bio-based PCMs occurred over a much narrower temperature range when compared to the wider windows characterizing the paraffin-based materials. Bio-based PCMs turned out to be very suitable for building applications and can be an environmentally friendly substitute for petroleum-based PCMs.

Publisher

MDPI AG

Subject

General Materials Science

Reference44 articles.

1. Designing Flexibility into a Hybrid Solar Thermal Power Plant by Real-Time, Adaptive Heat Integration;Rashid;Comput. Aided Chem. Eng.,2019

2. Environmental impacts of bioenergy crop production and benefits of multifunctional bioenergy systems;Ale,2019

3. https://ec.europa.eu/energy/en/topics/energy-efficiency/heating-and-cooling

4. https://ec.europa.eu/energy/sites/ener/files/documents/germany_de_version.pdf

5. Phase change materials and energy efficiency of buildings: A review of knowledge

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3