New Approach in COD Fractionation Methods

Author:

Płuciennik-Koropczuk EwelinaORCID,Myszograj SylwiaORCID

Abstract

Conventional quality parameters such as Chemical Oxygen Demand (COD) or Biochemical Oxygen Demand (BOD) give information about the quantity of organic matter present in wastewater, but do not give a clear indication of the biodegradability of the pollutants flowing in the WWTP. Detailed knowledge can be obtained by dividing the total COD into fractions. Fractionation and balancing of COD can be determined in various ways and with varying accuracy. Good wastewater characteristics are obtained on the basis of COD fractionation in accordance with ATV-A 131 guidelines, especially when the wastewater characteristics are in high compliance with the assumptions of the method. The article proposes a modification of the ATV-A131 method that increases the accuracy of determining the COD fraction. In order to reduce errors in the calculation of COD fractions, the value of fraction XS was calculated on the basis of the biochemical degradation rate determined in studies (k) for raw wastewater, whereas the SI fraction was calculated from the difference between SCOD and BODTot of filtered treated wastewater. BODTot of the treated wastewater was calculated taking into account the rate of biochemical degradation determined in the studies (k) for treated wastewater. The shares of individual COD fractions in raw wastewater calculated on the basis of the standard and modified procedure differed by approx. 10% in the case of suspension fractions. Modification of the methodology to determine the COD of the treated wastewater SS fraction significantly influenced the contents of all fractions in treated wastewater.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference27 articles.

1. Methods for Wastewater Characterisation in Activated Sludge Modelling. Water Environment Research Foundation;Melcer,2003

2. Wastewater Engineering: Treatment and Reuse;Tchobanoglous,2004

3. Biotechnologia Ścieków;Miksch,2010

4. Handbook of Water and Wastewater Microbiology;Mara,2003

5. Denitrification kinetics in biological N and P removal activated sludge systems treating municipal wastewaters

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3