Distinguishing Photosynthetic and Non-Photosynthetic Vegetation: How Do Traditional Observations and Spectral Classification Compare?

Author:

Fisk ClaireORCID,Clarke Kenneth,Delean Steven,Lewis MeganORCID

Abstract

Remotely sensed ground cover maps are routinely validated using field data collected by observers who classify ground cover into defined categories such as photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), bare soil (BS), and rock. There is an element of subjectivity to the classification of PV and NPV, and classifications may differ between observers. An alternative is to estimate ground cover based on in situ hyperspectral reflectance measurements (HRM). This study examines observer consistency when classifying vegetation samples of wheat (Triticum aestivum var. Gladius) covering the full range of photosynthetic activity, from completely senesced (0% PV) to completely green (100% PV), as photosynthetic or non-photosynthetic. We also examine how the classification of spectra of the same vegetation samples compares to the observer results. We collected HRM and photographs, over two months, to capture the transition of wheat leaves from 100% PV to 100% NPV. To simulate typical field methodology, observers viewed the photographs and classified each leaf as either PV or NPV, while spectral unmixing was used to decompose the HRM of the leaves into proportions of PV and NPV. The results showed that when a leaf was ≤25% or ≥75% PV observers tended to agree, and assign the leaf to the expected category. However, as leaves transitioned from PV to NPV (i.e., PV ≥ 25% but ≤ 75%) observers’ decisions differed more widely and their classifications showed little agreement with the spectral proportions of PV and NPV. This has significant implications for the reliability of data collected using binary methods in areas containing a significant proportion of vegetation in this intermediate range such as the over/underestimation of PV and NPV vegetation and how reliably this data can then be used to validate remotely sensed products.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3