Improving Deep Echo State Network with Neuronal Similarity-Based Iterative Pruning Merging Algorithm

Author:

Shen Qingyu123,Zhang Hanwen123,Mao Yao123ORCID

Affiliation:

1. Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209, China

2. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Recently, a layer-stacked ESN model named deep echo state network (DeepESN) has been established. As an interactional model of a recurrent neural network and deep neural network, investigations of DeepESN are of significant importance in both areas. Optimizing the structure of neural networks remains a common task in artificial neural networks, and the question of how many neurons should be used in each layer of DeepESN must be stressed. In this paper, our aim is to solve the problem of choosing the optimized size of DeepESN. Inspired by the sensitive iterative pruning algorithm, a neuronal similarity-based iterative pruning merging algorithm (NS-IPMA) is proposed to iteratively prune or merge the most similar neurons in DeepESN. Two chaotic time series prediction tasks are applied to demonstrate the effectiveness of NS-IPMA. The results show that the DeepESN pruned by NS-IPMA outperforms the unpruned DeepESN with the same network size, and NS-IPMA is a feasible and superior approach to improving the generalization performance of DeepESN. The newly proposed method has broad application prospects in real-time systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3