Design and Development of an Electronic Board for Supporting the Operation of Electrochemical Gas Sensors

Author:

Suriano Domenico1ORCID

Affiliation:

1. ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00196 Rome, Italy

Abstract

Air quality monitoring is performed by agencies using instrumentation based on extremely reliable technologies but characterized by high costs. An alternative gas sensing technology is the electrochemical gas sensor which, even though having a lower accuracy, offers some advantages, such as low costs and high miniaturization. Among the gas sensors designed for air quality monitoring, the most interesting are the ones based on electrochemical cells. To operate such sensors, it is necessary to have an electronic circuit typically implemented on electronic boards provided by the sensor manufacturer. The research described in this document regards the design and implementation of an electronic board to support the operation of the “B” series of the electrochemical gas sensors produced by Alphasense. This brand provides electronic boards that, on one side, are capable of offering excellent performances, but on the other side, are characterized by some limitations, such as the possibility of using only one sensor at a time. The experimental activities of our laboratory in the field of real-time air quality monitoring by using low-cost devices and technologies demand electronic boards to support the operation of such sensors having a higher grade of flexibility. To overcome this and other limitations, a new electronic board has been designed and implemented. In this document, its design and the implementation details are described.

Publisher

MDPI AG

Reference29 articles.

1. WHO (2024, February 15). Billions of People still Breathe Unhealthy Air: New WHO Data, April 2022, Available online: https://www.who.int/news/item/04-04-2022-billions-of-people-still-breathe-unhealthy-air-new-who-data.

2. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?;Castell;Environ. Int.,2017

3. Karagulian, F., Barbiere, M., Kotsev, A., Spinelle, L., Gerboles, M., Lagler, F., Redon, N., Crunaire, S., and Borowiak, A. (2019). Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere, 10.

4. The rise oflow-cost sensing for managing air pollution in cities;Kumar;Environ. Int.,2015

5. The Changing Paradigm of Air Pollution Monitoring;Snyder;Environ. Sci. Technol.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3