Synthesis of TiO2 Nanobelt Bundles Decorated with TiO2 Nanoparticles and Aggregates and Their Use as Anode Materials for Lithium-Ion Batteries

Author:

Luo Wenpo,Blanchard Juliette,Tonelli DomenicaORCID,Taleb AbdelhafedORCID

Abstract

TiO2 nanobelt bundles decorated with TiO2 aggregates were prepared using an easy and scalable hydrothermal method at various temperatures (170, 190, 210, and 230 °C). It was demonstrated that the synthesis temperature is a key parameter to tune the number of aggregates on the nanobelt surface. Prepared TiO2 aggregates and nanobelt bundles were used to design anode materials in which the aggregates regulated the pore size and connectivity of the interconnected nanobelt bundle structure. A galvanostatic technique was employed for the electrochemical characterization of TiO2 samples. Using TiO2 as a model material due to its small volume change during the cycling of lithium-ion batteries (LIBs), the relationship between the morphology of the anode materials and the capacity retention of the LIBs on cycling is discussed. It was clearly found that the size and connectivity of the pores and the specific surface area had a striking impact on the Li insertion behavior, lithium storage capability, and cycling performance of the batteries. The initial irreversible capacity was shown to increase as the specific surface area increased. As the pore size increased, the ability of the mesoporous anatase to release strain was stronger, resulting in better cycling stability. The TiO2 powder prepared at a temperature of 230 °C displayed the highest discharge and charge capacities (203.3 mAh/g and 140.8 mAh/g) and good cycling stability.

Funder

European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3