Numerical Study on Spreading and Vaporization Process of Liquid Nitrogen Droplet Impinging on Heated Wall

Author:

Wang Liu,Ding Yue,Qiu Yinan,Yu YunxingORCID,Xie Junlong,Chen Jianye

Abstract

Micro-structured surfaces can affect heat transfer mechanisms because of enlarged specific surface areas. However, employing the Leidenfrost effect during liquid nitrogen (LN2) droplet cooling of a heated micro-structured surface possessing a fin with a spacing much smaller than the diameter of the droplet has not yet been explored. In the present work, a direct numerical simulation (DNS) is carried out to investigate heat transfer mechanisms of the LN2 droplet, whose diameter is sufficiently larger than the structured spacing of fin, impinging on a micro-structured surface with variable velocities. For a comparative study, a smooth surface is also employed in numerical simulations. The spreading mechanisms and vaporization behavior of the droplet along with liquid film morphology at various conditions are investigated. Results show that a smaller fin size inhibits LN2 in entering into the grooves between the fins and left the surface untouched by the droplet completely, and eventually, a thinner liquid film is spread out in contrast to the smooth surface. Notably, at a low Weber number, the droplet can be shrunk or even rebounded away from the wall after impinging on the wall. The fastest vaporization behavior for both surfaces, namely smooth and micro-structured, is obtained at a Weber number of 180. Additionally, an effective heat transfer upon the micro-structured surface is observed at a low impinging velocity of the droplet.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference31 articles.

1. A study of intermittent liquid nitrogen sprays;Appl. Therm. Eng.,2014

2. Cryogenic system with the sub-cooled liquid nitrogen for cooling HTS power cable;Cryogenics,2005

3. Application of Doppler global velocimetry in cryogenic wind tunnels;Exp. Fluids,2005

4. Liquid nitrogen spray cryotherapy in Barrett’s esophagus with high-grade dysplasia: Long-term results;Gastrointest. Endosc.,2013

5. A Review of Novel and Innovative Food Freezing Technologies;Food Bioprocess Technol.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3