Bidirectional Flow Decision Tree for Reliable Remote Sensing Image Scene Classification

Author:

Feng JiangfanORCID,Wang Dini,Gu Zhujun

Abstract

Remote sensing image scene classification (RSISC), which aims to classify scene categories for remote sensing imagery, has broad applications in various fields. Recent deep learning (DL) successes have led to a new wave of RSISC applications; however, they lack explainability and trustworthiness. Here, we propose a bidirectional flow decision tree (BFDT) module to create a reliable RS scene classification framework. Our algorithm combines BFDT and Convolutional Neural Networks (CNNs) to make the decision process easily interpretable. First, we extract multilevel feature information from the pretrained CNN model, which provides the basis for constructing the subsequent hierarchical structure. Then the model uses the discriminative nature of scene features at different levels to gradually refine similar subsets and learn the interclass hierarchy. Meanwhile, the last fully connected layer embeds decision rules for the decision tree from the bottom up. Finally, the cascading softmax loss is used to train and learn the depth features based on the hierarchical structure formed by the tree structure that contains rich remote sensing information. We also discovered that superclass results can be obtained well for unseen classes due to its unique tree structure hierarchical property, which results in our model having a good generalization effect. The experimental results align with theoretical predictions using three popular datasets. Our proposed framework provides explainable results, leading to correctable and trustworthy approaches.

Funder

National Natural Science Foundation of China

Guangdong Provincial Science and technology plan project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3