Changes in Expression Level of OsHKT1;5 Alters Activity of Membrane Transporters Involved in K+ and Ca2+ Acquisition and Homeostasis in Salinized Rice Roots

Author:

Alnayef Mohammad,Solis Celymar,Shabala Lana,Ogura Takaaki,Chen Zhonghua,Bose Jayakumar,Maathuis Frans J. M.,Venkataraman Gayatri,Tanoi KeitaroORCID,Yu Min,Zhou MeixueORCID,Horie Tomoaki,Shabala SergeyORCID

Abstract

In rice, the OsHKT1;5 gene has been reported to be a critical determinant of salt tolerance. This gene is harbored by the SKC1 locus, and its role was attributed to Na+ unloading from the xylem. No direct evidence, however, was provided in previous studies. Also, the reported function of SKC1 on the loading and delivery of K+ to the shoot remains to be explained. In this work, we used an electrophysiological approach to compare the kinetics of Na+ uptake by root xylem parenchyma cells using wild type (WT) and NIL(SKC1) plants. Our data showed that Na+ reabsorption was observed in WT, but not NIL(SKC1) plants, thus questioning the functional role of HKT1;5 as a transporter operating in the direct Na+ removal from the xylem. Instead, changes in the expression level of HKT1;5 altered the activity of membrane transporters involved in K+ and Ca2+ acquisition and homeostasis in the rice epidermis and stele, explaining the observed phenotype. We conclude that the role of HKT1;5 in plant salinity tolerance cannot be attributed to merely reducing Na+ concentration in the xylem sap but triggers a complex feedback regulation of activities of other transporters involved in the maintenance of plant ionic homeostasis and signaling under stress conditions.

Funder

National Natural Science Foundation of China

Department of Industry, Innovation, Science, Research and Tertiary Education, Australian Government

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3