Disruption of Alternative Splicing in the Amygdala of Pigs Exposed to Maternal Immune Activation

Author:

Southey Bruce R.ORCID,Keever-Keigher Marissa R.ORCID,Rymut Haley E.ORCID,Rund Laurie A.,Johnson Rodney W.,Rodriguez-Zas Sandra L.

Abstract

The inflammatory response of gestating females to infection or stress can disrupt gene expression in the offspring’s amygdala, resulting in lasting neurodevelopmental, physiological, and behavioral disorders. The effects of maternal immune activation (MIA) can be impacted by the offspring’s sex and exposure to additional stressors later in life. The objectives of this study were to investigate the disruption of alternative splicing patterns associated with MIA in the offspring’s amygdala and characterize this disruption in the context of the second stress of weaning and sex. Differential alternative splicing was tested on the RNA-seq profiles of a pig model of viral-induced MIA. Compared to controls, MIA was associated with the differential alternative splicing (FDR-adjusted p-value < 0.1) of 292 and 240 genes in weaned females and males, respectively, whereas 132 and 176 genes were differentially spliced in control nursed female and male, respectively. The majority of the differentially spliced (FDR-adjusted p-value < 0.001) genes (e.g., SHANK1, ZNF672, KCNA6) and many associated enriched pathways (e.g., Fc gamma R-mediated phagocytosis, non-alcoholic fatty liver disease, and cGMP-PKG signaling) have been reported in MIA-related disorders including autism and schizophrenia in humans. Differential alternative splicing associated with MIA was detected in the gene MAG across all sex-stress groups except for unstressed males and SLC2A11 across all groups except unstressed females. Precise understanding of the effect of MIA across second stressors and sexes necessitates the consideration of splicing isoform profiles.

Funder

United States Department of Agriculture

NIH

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3