Urban Traffic Dominance: A Dynamic Assessment Using Multi-Source Data in Shanghai

Author:

Mei Yuyang1,Wang Shenmin2,Gong Mengjie3,Chen Jiazheng1

Affiliation:

1. Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China

2. School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China

3. School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China

Abstract

This study redefines the evaluation of urban traffic dominance by integrating complex network theory with multi-source spatiotemporal trajectory data, addressing the dynamic nature of various transportation modes, including public transit and shared mobility. Traditional traffic studies, which focus predominantly on static road traffic characteristics, overlook the fluid dynamics integral to urban transport systems. We introduce Relative Weighted Centrality (RWC) as a novel metric for quantifying dynamic traffic dominance, combining it with traditional static metrics to forge a comprehensive traffic dominance evaluation system. The results show the following: (1) Both static and dynamic traffic dominance display core-periphery structures centered around Huangpu District. (2) Dynamically, distinct variations in RWC emerge across different times and transport modes; during the early hours (0:00–6:00), shared bicycles show unique spatial distributions, the subway network experiences a notable decrease in RWC yet maintains its spatial pattern, and taxis exhibit intermediate characteristics. Conversely, the RWC for all modes generally increases during morning (6:00–12:00) and evening (18:00–24:00) peaks, with a pronounced decrease in subway RWC in the latter period. (3) The integration of dynamic evaluations significantly modifies conventional static results, emphasizing the impact of population movements on traffic dominance. This comprehensive analysis provides crucial insights into the strategic management and development of urban traffic infrastructure in Shanghai.

Funder

Jiangsu Province Natural Resources Science and Technology Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3