Comprehensive Multidisciplinary Electric Vehicle Modeling: Investigating the Effect of Vehicle Design on Energy Consumption and Efficiency

Author:

Aslan Eyyup1,Yasa Yusuf2ORCID,Meseci Yunus3,Keskin Arabul Fatma4ORCID,Arabul Ahmet Yigit4ORCID

Affiliation:

1. Electric Electronic Engineering, Bursa Technical University, Bursa 16310, Türkiye

2. Department of Electrical Engineering, Istanbul Technical University, Istanbul 34469, Türkiye

3. Mechanical Engineering, Bursa Technical University, Bursa 16310, Türkiye

4. Department of Electrical Engineering, Yildiz Technical University, Istanbul 34220, Türkiye

Abstract

In this study, an electric vehicle (EV) dynamic model is devised that amalgamates mechanical design aspects—such as aerodynamic effects, tire friction, and vehicle frontal area—with crucial components of the electrical infrastructure, including the electric motor, power converters, and battery systems. Verification of the model is executed through a comprehensive multidisciplinary analysis utilizing CATIA, ANSYS Electromagnetics, ANSYS Fluent, and MATLAB–Simulink tools, which are applied to evaluate two alternative lightweight EV prototypes. The process involves initial computations of critical inputs for the dynamic model, including aerodynamic lift (C1), drag coefficients (Cd), and frontal area (Af). Subsequent stages entail the detailed design and analysis of a 2 kW brushless permanent magnet electric motor in ANSYS Electromagnetics to map efficiency contours across various speed–torque values. Integration of these parameters into a MATLAB–Simulink dynamic model, connected with motor drive inverter and battery models, allows for simulation-based energy consumption analysis under race track slope profiles. Remarkably, the findings underscore the considerable impact of neglected parameters on energy consumption, often exceeding fifty percent of the total. Consequently, an energy-efficient EV prototype is manufactured and rigorously tested under specified drive conditions, affirming the validation of the comprehensive multidisciplinary EV dynamic model.

Funder

Bursa Technical University Scientific Research Projects Unit

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3