Meta-Genomic Analysis of Different Bacteria and Their Genomes Found in Raw Buffalo Milk Obtained in Various Farms Using Different Milking Methods

Author:

Li Ling12ORCID,Miao Wenhao1,Li Zhipeng12ORCID,Huang Li2,Hau Enghuan2,Khan Muhammad Farhan3ORCID,Liu Qingyou14ORCID,Zeng Qingkun2,Cui Kuiqing14

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China

2. Guangxi Zhuang Autonomous Region Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China

3. Department of Chemistry, Gomal University, Dera Ismail Khan 29050, Pakistan

4. Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China

Abstract

Milking methods have significant impacts on the microbiological composition, which could affect the quality of raw buffalo milk. Hence, the current study was conducted on the impact of milking methods on microorganisms in buffalo tank raw milk from 15 farms in Guangxi, China. The farms were divided into two groups based on the milking method: mechanical milking (MM, n = 6) and hand milking (HM, n = 9). Somatic cell counts, bacterial cell counts and nutrients of the raw buffalo milk samples were analyzed. The comparison of raw buffalo milk samples was analyzed using metagenomic sequencing to detect any differences between the two groups. There was no significant difference in the basic nutritional compositions and somatic cell count of raw buffalo milk between the two milking methods. However, the HM samples had significantly higher bacterial counts and diversity compared to the MM samples. The results showed that Staphylococcus spp., Klebsiella spp., Streptococcus spp., and Pseudomonas spp. were the major microbes present in canned raw buffalo milk. However, the differences between the two milking methods were the relative abundance of core microorganisms and their potential mastitis-causing genera, including the content of antibiotic-resistance genes and virulence genes. Our study revealed that Staphylococcus spp. and Streptococcus spp. were significantly more abundant in the MM group, while Klebsiella spp. was more abundant in the HM group. Regardless of the milking method used, Pseudomonas spp. was identified as the primary genus contributing to antibiotic resistance and virulence genes in canned raw buffalo milk. These findings affirm that there are differences in the microbial and genomic levels in canned raw milk. To prove the functional roles of the discovered genes and how these genes affect milk quality, further research and experimental validation are necessary.

Funder

Guangxi Science and Technology Major Project

Guangxi Innovation Team Construction of National Modern Agricultural Industrial Technology System

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3