Affiliation:
1. Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
2. College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
Abstract
The plastid organelle is vital for photosynthesis and energy production. Advances in sequencing technology have enabled the exploration of plastomic resources, offering insights into plant evolution, diversity, and conservation. As an important group of horticultural ornamentals in the Crassulaceae family, Sempervivum plants are known for their unique rosette-like structures and reproduction through offsets. Despite their popularity, the classification status of Sempervivum remains uncertain, with only a single plastome sequence currently available. Furthermore, codon usage bias (CUB) is a widespread phenomenon of the unbalanced usage of synonymous codons in the coding sequence (CDS). However, due to the limited available plastid data, there has been no research that focused on the CUB analysis among Sempervivum until now. To address these gaps, we sequenced and released the plastomes of seven species and one subspecies from Sempervivum, revealing several consistent patterns. These included a shared 110 bp extension of the rps19 gene, 14 hypervariable regions (HVRs) with distinct nucleotide diversity (π: 0.01173 to 0.02702), and evidence of selective pressures shaping codon usage. Notably, phylogenetic analysis robustly divided the monophyletic clade into two sections: Jovibarba and Sempervivum. In conclusion, this comprehensive plastomic resource provides valuable insights into Sempervivum evolution and offers potential molecular markers for DNA barcoding.
Funder
Basic Research Program (Natural Science Foundation) of Jiangsu Province
Science Technology and Innovation Commission of Shenzhen Municipality
Shenzhen Fundamental Research Program
Guangdong Pearl River Talent Program
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献