Xylitol Production from Exhausted Olive Pomace by Candida boidinii

Author:

López-Linares Juan CarlosORCID,Ruiz EncarnaciónORCID,Romero InmaculadaORCID,Castro EulogioORCID,Manzanares PalomaORCID

Abstract

In this work, the production of xylitol from a hemicellulosic hydrolysate of exhausted olive pomace (EOP), a residue originated in the olive oil production process by Candida boidinii, was assessed. The hydrolysate was obtained by dilute acid pretreatment of EOP at 170 °C and 2% H2SO4 (w/v). A previous detoxification step of the hydrolysate was necessary, and its treatment with activated charcoal and ion-exchange resin was evaluated. Prior to fermentation of the hydrolysate, fermentation tests in synthetic media were performed to determine the maximum xylitol yield and productivity that could be obtained if inhibitory compounds were not present in the medium. In addition, the glucose existing in the media exerted a negative influence on xylitol production. A maximum xylitol yield of 0.52 g/g could be achieved in absence of inhibitor compounds. Fermentation of the hemicellulosic hydrolysate from EOP after detoxification with ion-exchange resin resulted in a xylitol yield of 0.43 g/g.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3