Abstract
The large random errors in Micro-Electro-Mechanical System (MEMS) gyros are one of the major factors that affect the precision of inertial navigation systems. Based on the indoor inertial navigation system, an improved wavelet threshold de-noising method was proposed and combined with a gradient radial basis function (RBF) neural network to better compensate errors. We analyzed the random errors in an MEMS gyroscope by using Allan variance, and introduced the traditional wavelet threshold methods. Then, we improved the methods and proposed a new threshold function. The new method can be used more effectively to detach white noise and drift error in the error model. Finally, the drift data was modeled and analyzed in combination with the RBF neural network. Experimental results indicate that the method is effective, and this is of great significance for improving the accuracy of indoor inertial navigation based on MEMS gyroscopes.
Funder
Beijing Information Science and Technology University
National Nature Science Foundation under Grant
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献