Abstract
Geometrical parameters, such as the thickness and the sidewall etch angle of microelectromechanical systems (MEMS) thin films, are important information for device design and simulation, material property extraction, and quality control in a fabrication process line. This paper presents an in-line test microstructure for measuring geometrical parameters of surface micromachined thin films. The structure consists of four-probe bridges with continuous step structures and deposited at three different angles. The extraction method takes advantage of the resistances of the step structures to determine the thickness and the sidewall etch angle of the phosphosilicate glass (PSG) layer and the thickness of the polysilicon layer. The sheet resistance and the width of the test structure are required for the extraction method and can also be measured by using the test structure. Thicknesses of (2.080 ± 0.011) µm, (2.142 ± 0.012) µm, (1.614 ± 0.014) µm and (2.892 ± 0.012) µm are obtained for the Poly 1 layer, the Oxide 1 layer, the Poly 2 layer and the stacked layer of Oxide 1-Oxide 2, respectively. The sidewall etch angles for the Oxide 1 layer and the stacked layer of Oxide 1-Oxide 2 are obtained as (77.51 ± 0.61)° and (76.17 ± 0.91)°, respectively. In comparison to previously reported thickness measurement approaches, the proposed method is nondestructive, and makes use of four-point probe technique which is featured with electrical input and output configuration, simple operation, low cost, fast response, good repeatability and ease of integration. Therefore, this method is more suited to in-line monitoring the MEMS fabrication process.
Funder
Natural Science Foundation of Jiangsu Province
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献