Study on Fluid Movement Characteristics inside the Emitter Flow Path of Drip Irrigation System Using the Yellow River Water

Author:

Feng Ji,Wang Weinan,Liu Haisheng

Abstract

Vigorously developing efficient water-saving agricultural technologies using the Yellow River Water is an important way to achieve sustainable use of water resources. In order to clarify the fluid movement characteristics inside the flow path of the emitter under complicated water quality conditions in a drip irrigation system using the Yellow River Water, the optimal simulation turbulence model for the flow field in the flow path of the emitter was determined by comparing the macroscopic hydraulic characteristics with the microscopic fluid motion characteristics of the fluid in the emitter. On this basis, the two-phase flow model was used to calculate and analyze the characteristics of water flow movement and particle transport in the emitter. The results show that the RNG (Re- normalization group) k-ε turbulence model was the most suitable for the simulation of the flow field in the emitter, considering the macroscopic hydraulic performance and microscopic anti-clogging ability of the emitter synthetically, and both the comprehensive calculation accuracy and the calculation efficiency. The pressure showed a step-like uniform decrease along the direction of water flow. The fluid flow showed the regional movement characteristics of the mainstream and non-mainstream regions. The energy dissipation mainly occurred at the sudden change sites of the flow path structure. The particle phase velocity was slightly lower than that of the water phase. The velocity at the near-wall surface was relatively lower than that at the center, and the velocity distribution along the depth direction of the flow path was relatively uneven. The sediment was mainly deposited in the first half of the flow path. This study can provide a theoretical basis for solving the emitter clogging in the drip irrigation systems applying water from the Yellow River.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3