Leveraging Behavioral Correlation in Distribution System State Estimation for the Recognition of Critical System States

Author:

Buchta Eva12ORCID,Duckheim Mathias1ORCID,Metzger Michael3ORCID,Stursberg Paul3ORCID,Niessen Stefan12ORCID

Affiliation:

1. Technology, Sustainable Energy & Infrastructure, Siemens AG, 91056 Erlangen, Germany

2. Technology and Economics of Multimodal Energy Systems, Technical University of Darmstadt, 64289 Darmstadt, Germany

3. Technology, Sustainable Energy & Infrastructure, Siemens AG, 81739 Munich, Germany

Abstract

State estimation for distribution systems faces the challenge of dealing with limited real-time measurements and historical data. This work describes a Bayesian state estimation approach tailored for practical implementation in different data availability scenarios, especially when both real-time and historical data are scarce. The approach leverages statistical correlations of the state variables from a twofold origin: (1) from the physical coupling through the grid and (2) from similar behavioral patterns of customers. We show how these correlations can be parameterized, especially when no historical time series data are available, and that accounting for these correlations yields substantial accuracy gains for state estimation and for the recognition of critical system states, i.e., states with voltage or current limit violations. In a case study, the approach is tested in a realistic European-type, medium-voltage grid. The method accurately recognizes critical system states with an aggregated true positive rate of 98%. Compared to widely used approaches that do not consider these correlations, the number of undetected true critical cases can be reduced by a factor of up to 9. Particularly in the case where no historical smart meter time series data is available, the recognition accuracy of critical system states is nearly as high as with full smart meter coverage.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3