Research on Reactive Power Optimization Based on Hybrid Osprey Optimization Algorithm

Author:

Zhang Yi12ORCID,Liu Pengtao12

Affiliation:

1. College of Electrical and Computer Science, Jilin Jianzhu University, Changchun 130000, China

2. Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China

Abstract

This paper presents an improved osprey optimization algorithm (IOOA) to solve the problems of slow convergence and local optimality. First, the osprey population is initialized based on the Sobol sequence to increase the initial population’s diversity. Second, the step factor, based on Weibull distribution, is introduced in the osprey position updating process to balance the explorative and developmental ability of the algorithm. Lastly, a disturbance based on the Firefly Algorithm is introduced to adjust the position of the osprey to enhance its ability to jump out of the local optimal. By mixing three improvement strategies, the performance of the original algorithm has been comprehensively improved. We compared multiple algorithms on a suite of CEC2017 test functions and performed Wilcoxon statistical tests to verify the validity of the proposed IOOA method. The experimental results show that the proposed IOOA has a faster convergence speed, a more robust ability to jump out of the local optimal, and higher robustness. In addition, we also applied IOOA to the reactive power optimization problem of IEEE33 and IEEE69 node, and the active power network loss was reduced by 48.7% and 42.1%, after IOOA optimization, respectively, which verifies the feasibility and effectiveness of IOOA in solving practical problems.

Funder

Science and Technology Development Project of Jilin Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference43 articles.

1. Reactive coordinated optimal operation of distributed wind generation;Xiang;Energy,2021

2. Multi-Agent Deep Reinforcement Learning for Voltage Control with Coordinated Active and Reactive Power Optimization;Hu;IEEE Trans. Smart Grid,2022

3. Reactive power optimization of distribution network with distributed power based on meta-model global optimization;Xiao;Proc. CSEE,2018

4. Combined Firm and Renewable Distributed Generation and Reactive Power Planning;Niazi;IEEE Access,2021

5. Linear programming applications to power system economics. Planning and Operations;Delson;IEEE Trans. Power Syst.,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3