Affiliation:
1. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2. Hubei Technology Innovation Center for Smart Hydropower, Wuhan 430000, China
3. Hubei Key Laboratory of Digital River Basin Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract
With global warming and intensified human activities, extreme convective precipitation has become one of the most frequent natural disasters. An accurate and reliable assessment of severe convective precipitation events can support social stability and economic development. In order to investigate the accuracy enhancement methods and data fusion strategies for the assessment of severe convective precipitation events, this study is driven by the horizontal reflectance factor (ZH) and differential reflectance (ZDR) of the dual-polarization radar. This research work utilizes microphysical information of convective storms provided by radar variables to construct the precipitation event assessment model. Considering the problems of high dimensionality of variable data and low computational efficiency, this study proposes a dual-polarization radar echo-data-layering strategy. Combined with the results of mutual information (MI), this study constructs Bayes–Kalman filter (KF) models (RF, SVR, GRU, LSTM) for the assessment of severe convective precipitation events. Finally, this study comparatively analyzes the evaluation effectiveness and computational efficiency of different models. The results show that the data-layering strategy is able to reduce the data dimensions of 256 × 256 × 34,978 to 5 × 2213, which greatly improves the computational efficiency. In addition, the correlation coefficient of interval III–V calibration period is increased to 0.9, and the overall assessment accuracy of the model is good. Among them, the Bayes–KF-LSTM model has the best assessment effect, and the Bayes–KF-RF has the highest computational efficiency. Further, five typical precipitation events are selected for validation in this study. The stratified precipitation dataset agrees well with the near-surface precipitation, and the model’s assessment values are close to the observed values. This study completely utilizes the microphysical information offered by dual-polarized radar ZH and ZDR in precipitation event assessment, which provides a wide range of application possibilities for the assessment of severe convective precipitation events.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Open Research Fund of Hubei Technology Innovation Center for Smart Hydropower
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献