Intensification of Human Land Use Decreases Taxonomic, Functional, and Phylogenetic Diversity of Macroinvertebrate Community in Weihe River Basin, China

Author:

Ma Jixin1,Yin Xuwang1,Liu Gang1,Song Jinxi2ORCID

Affiliation:

1. Liaoning Provincial Key Laboratory for Hydrobiology, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116000, China

2. Shanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China

Abstract

Recent anthropogenic activities have escalated human exploitation of riparian zones of river ecosystems, consequently diminishing aquatic biodiversity. This intensification of land use is also causing water quality degradation and changes in water environmental factors, evidenced by increased nutrient levels and adversely impacting the community structure and diversity of aquatic organisms. Notably, the Weihe River Basin, the largest tributary of the Yellow River, has demonstrated signs of significant anthropogenic pressure. Despite this, comprehensive investigations examining the effects of land-use intensity on aquatic organism diversity in this watershed remain limited. In this study, the environmental impacts and macroinvertebrate diversity under high-intensity and low-intensity land-use scenarios within the Weihe River Basin were investigated through field surveys conducted during the spring and autumn seasons. Our results demonstrated that areas under high-intensity land use exhibited elevated nutrient concentrations (e.g., total nitrogen) compared to those under low-intensity land use. These environmental changes significantly influenced the macroinvertebrate community structure, reducing functional and phylogenetic diversities in high-intensity land-use watersheds. Hydrological factors (water depth, river width, and discharge) have a significant impact on macroinvertebrate taxonomic diversity. Thus, understanding the effects of land-use intensity on aquatic biodiversity is essential for ecological assessments of impacted watersheds and developing management strategies for the sustainable use and planning of riparian lands in the Weihe River Basin.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3