An Estimation of the Lightweight Potential of Battery Electric Vehicles

Author:

Nicoletti LorenzoORCID,Romano AndreaORCID,König AdrianORCID,Köhler Peter,Heinrich Maximilian,Lienkamp Markus

Abstract

Although battery electric vehicles (BEVs) are locally emission-free and assist automakers in reducing their carbon footprint, two major disadvantages are their shorter range and higher production costs compared to combustion engines. These drawbacks are primarily due to the battery, which is generally the heaviest and most expensive component of a BEV. Lightweight measures (strategies to decrease vehicle mass, e.g., by changing materials or downsizing components) lower energy consumption and reduce the amount of battery energy required (and in turn battery costs). Careful selection of lightweight measures can result in their costs being balanced out by a commensurate reduction in battery costs. This leads to a higher efficiency vehicle, but without affecting its production and development costs. In this paper, we estimate the lightweight potential of BEVs, i.e., the cost limit below which a lightweight measure is fully compensated by the cost savings it generates. We implement a parametric energy consumption and mass model and apply it to a set of BEVs. Subsequently, we apply the model to quantify the lightweight potential range (in €/kg) of BEVs. The findings of this paper can be used as a reference for the development of cheaper, lighter, and more energy-efficient BEVs.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference44 articles.

1. Setting CO2 Emission Performance Standards for New Passenger Cars and for New Light Commercial Vehicles, and Repealing Regulations (EC) No 443/2009 and (EU) No 510/2011: EC 2019/631https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R0631

2. CO2 Emission Standards for Passenger Cars and Light-Commercial Vehicles in the European Unionhttps://theicct.org/publications/ldv-co2-stds-eu-2030-update-jan2019

3. From Cell to Battery System in BEVs: Analysis of System Packing Efficiency and Cell Types

4. Optimization of Electric Vehicle Concepts Based on Customer-Relevant Characteristics;Wiedemann,2012

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3