Non-Intrusive Voltage-Inversion Measurement Method for Overhead Transmission Lines Based on Near-End Electric-Field Integration

Author:

Liao Wei1,Yang Qing1,Ke Kun1,Qiu Zhenhui1,Lei Yuqing2,Jiao Fei2

Affiliation:

1. State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China

2. China Electric Power Research Institute, Beijing 100192, China

Abstract

Existing electric-field integral inversion methods have limited field application conditions, and they are difficult to arrange electric-field measurement points on high-span overhead lines. This paper proposes a non-intrusive voltage measurement method for overhead transmission lines based on the near-end electric-field integration method. First, the electric-field distribution under 10 kV lines is calculated by finite element simulation software. The electric-field distribution of the plumb line and the discrete integral node below the wire are analyzed. Then, based on traditional electric-field integration, a line-voltage-inversion measurement method based on near-end electric-field integration is proposed. In addition, a voltage-monitoring system based on near-end electric-field integration is constructed. Next, the numerical integration types, the number of integration nodes, and the scale coefficient of the near-end region of the inversion algorithm are optimized with the electric-field simulation data. Finally, to verify the voltage-inversion method proposed in this paper, a test platform for overhead-line voltage is constructed using a MEMS electric-field sensor. The results indicate that the voltage-inversion error is 5.75%. The research results will provide theoretical guidance for non-intrusive voltage-inversion measurement of overhead lines.

Funder

National Natural Science Foundations of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on sensors for electric fields near power transmission systems;Measurement Science and Technology;2024-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3