Modeling Predictability of Traffic Counts at Signalised Intersections Using Hurst Exponent

Author:

Chand SaiORCID

Abstract

Predictability is important in decision-making in many fields, including transport. The ill-predictability of time-varying processes poses severe problems for traffic and transport planners. The sources of ill-predictability in traffic phenomena could be due to uncertainty and incompleteness of data and models and/or due to the complexity of the processes itself. Traffic counts at intersections are typically consistent and repetitive on the one hand and yet can be less predictable on the other hand, in which on any given time, unusual circumstances such as crashes and adverse weather can dramatically change the traffic condition. Understanding the various causes of high/low predictability in traffic counts is essential for better predictions and the choice of prediction methods. Here, we utilise the Hurst exponent metric from the fractal theory to quantify fluctuations and evaluate the predictability of intersection approach volumes. Data collected from 37 intersections in Sydney, Australia for one year are used. Further, we develop a random-effects linear regression model to quantify the effect of factors such as the day of the week, special event days, public holidays, rainfall, temperature, bus stops, and parking lanes on the predictability of traffic counts. We find that the theoretical predictability of traffic counts at signalised intersections is upwards of 0.80 (i.e., 80%) for most of the days, and the predictability is strongly associated with the day of the week. Public holidays, special event days, and weekends are better predictable than typical weekdays. Rainfall decreases predictability, and intersections with more parking spaces are highly predictable.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference54 articles.

1. Statistical Analysis of Day-to-Day Variations in Real-Time Traffic Flow Data;Rakha;Transp. Res. Rec.,1995

2. (Un)predictability in Traffic and Transport Decision Making

3. Model-free quantification of time-series predictability

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3