Abstract
University towns face many challenges in the 21st century due to urbanization, increased student population, and higher educational institutions’ inability to house all their students on-campus. For university towns to be resilient and sustainable, the challenges facing them must be assessed and addressed. To carry out community resilience assessments, this study adopted a novel methodological framework to harness the power of artificial intelligence and social media big data (user-generated content on Twitter) to carry out remote studies in six university towns on six continents using Text Mining, Machine Learning, and Natural Language Processing. Cultural, social, physical, economic, and institutional and governance community challenges were identified and analyzed from the historical big data and validated using an online expert survey. This study gives a global overview of the challenges university towns experience due to studentification and shows that artificial intelligence can provide an easy, cheap, and more accurate way of conducting community resilience assessments in urban communities. The study also contributes to knowledge of research in the new normal by proving that longitudinal studies can be completed remotely.
Funder
Research Institute for Sustainable Development (RISUD) and The Department of Building and Real Estate of the Hong Kong Polytechnic University
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献