Effect of Flow Rate on Turbulence Dissipation Rate Distribution in a Multiphase Pump

Author:

Huang Zongliu,Shi Guangtai,Liu Xiaobing,Wen Haigang

Abstract

The turbulence dissipation will cause the increment of energy loss in the multiphase pump and deteriorate the pump performance. In order to research the turbulence dissipation rate distribution characteristics in the pressurized unit of the multiphase pump, the spiral axial flow type multiphase pump is researched numerically in the present study. This research is focused on the turbulence dissipation rate distribution characteristics in the directions of inlet to outlet, hub to rim, and in the circumferential direction of the rotating impeller blades. Numerical simulation based on the RANS (Reynolds averaged Navier–Stokes equations) and the k-ω SST (Shear Stress Transport) turbulence model has been carried out. The numerical method is verified by comparing the numerical results with the experimental data. Results show that the regions of the large turbulence dissipation rate are mainly at the inlet and outlet of the rotating impeller and static impeller, while it is almost zero from the inlet to the middle of outlet in the suction surface and pressure surface of the first-stage rotating impeller blades. The turbulence dissipation rate is increased gradually from the hub to the rim of the inlet section of the first-stage rotating impeller, while it is decreased firstly and then increased on the middle and outlet sections. The turbulence dissipation rate distributes unevenly in the circumferential direction on the outlet section. The maximum value of the turbulence dissipation rate occurs at 0.9 times of the rated flow rate, while the minimum value at 1.5 times of the rated flow rate. Four turning points in the turbulence dissipation rate distribution that are the same as the number of impeller blades occur at 0.5 times the blade height at 0.9 times the rated flow rate condition. The turbulence dissipation rate distribution characteristics in the pressurized unit of the multiphase pump have been studied carefully in this paper, and the research results have an important significance for improving the performance of the multiphase pump theoretically.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3