Numerical Simulation of Slope Stability during Underground Excavation Using the Lagrange Element Strength Reduction Method

Author:

Ding Qi-Le,Peng Yan-Yan,Cheng Zheng,Wang Peng

Abstract

In this study, the Lagrange element strength reduction method is used to explore slope stability and as an evaluation method of underground mining of end-slope coal in a rock-stability analysis. A numerical analysis model is established herein using the geological conditions for mining in a coordinated open pit with an underground mining area of the Anjialing Open-Pit Mine and Underground No. 2 Mine. Additionally, the evolution law of slope stability in open-pit end-slope mining is studied using the proposed numerical simulation method. According to our findings, the steps show obvious horizontal movement and deformation under the influence of underground mining disturbances. Taking the horizontal displacement at the slope tops of the steps as the deformation index, the entire disturbed slope is divided into four regions: upper, middle-upper, middle-lower, and lower steps. When a step is fully affected by underground mining, its subsidence value first increases rapidly and then slowly. An exponential function is used to reflect the change rule in the step-subsidence value as the working face advances. In the underground mining process, the critical sliding surface of the slope develops along the soft rock or coal seam, showing an L-shaped or a W (double L)-shaped broken line. As the working face advances, the initial position of the sliding mass is unchanged while the cutting position alternately changes up and down in the weak plane. The safety factor suddenly drops when the advancing distance exceeds a certain value.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Dongguan Science and Technology of Social Development Program

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference38 articles.

1. Optimization of the transition from open-pit to underground operation in combined mining using (0–1) integer programming;Bakhtavar;J. S. Afr. Inst. Min. Metall.,2012

2. Mining method selection and optimization of transition from open pit to underground in combined mining;Bakhtavar;Arch. Min. Sci.,2009

3. Stochastic modelling of the open pit to underground transition interface for gold mines

4. Rational design of ore discharge bottom in transition from open pit to underground mining in udachny mine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3