Lesion Localization and Pathological Diagnosis of Ovine Pulmonary Adenocarcinoma Based on MASK R-CNN

Author:

Chen Sixu123ORCID,Zhang Pei123,Duan Xujie123,Bao Anyu123,Wang Buyu4ORCID,Zhang Yufei123ORCID,Li Huiping123,Zhang Liang123,Liu Shuying123

Affiliation:

1. College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot 010018, China

2. Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China

3. Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China

4. College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China

Abstract

Ovine pulmonary adenocarcinoma (OPA) is a contagious lung tumour caused by the Jaagsiekte Sheep Retrovirus (JSRV). Histopathological diagnosis is the gold standard for OPA diagnosis. However, interpretation of traditional pathology images is complex and operator dependent. The mask regional convolutional neural network (Mask R-CNN) has emerged as a valuable tool in pathological diagnosis. This study utilized 54 typical OPA whole slide images (WSI) to extract 7167 typical lesion images containing OPA to construct a Common Objects in Context (COCO) dataset for OPA pathological images. The dataset was categorized into training and test sets (8:2 ratio) for model training and validation. Mean average specificity (mASp) and average sensitivity (ASe) were used to evaluate model performance. Six WSI-level pathological images (three OPA and three non-OPA images), not included in the dataset, were used for anti-peeking model validation. A random selection of 500 images, not included in the dataset establishment, was used to compare the performance of the model with assessment by pathologists. Accuracy, sensitivity, specificity, and concordance rate were evaluated. The model achieved a mASp of 0.573 and an ASe of 0.745, demonstrating effective lesion detection and alignment with expert annotation. In Anti-Peeking verification, the model showed good performance in locating OPA lesions and distinguished OPA from non-OPA pathological images. In the random 500-image diagnosis, the model achieved 92.8% accuracy, 100% sensitivity, and 88% specificity. The agreement rates between junior and senior pathologists were 100% and 96.5%, respectively. In conclusion, the Mask R-CNN-based OPA diagnostic model developed for OPA facilitates rapid and accurate diagnosis in practical applications.

Funder

National Natural Science Foundation of China

Grassland Talents Innovative Team Project of Inner Mongolia

Innovation Team Project of Cattle and Sheep Disease Prevention and Development Engineering of Inner Mongolia

Veterinary Basic and Cattle and Sheep Disease Prevention and Control Technology Research and Innovation Team Project

Science and Technology Major Special Project of Inner Mongolia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3