Elevation-Dependent Trends in Precipitation Observed over and around the Tibetan Plateau from 1971 to 2017

Author:

Hu Wenfeng,Yao JunqiangORCID,He Qing,Chen Jing

Abstract

The Tibetan Plateau (TP) are regions that are most sensitive to climate change, especially extreme precipitation changes with elevation, may increase the risk of natural disasters and have attracted attention for the study of extreme events in order to identify adaptive actions. Based on daily observed data from 113 meteorological stations in the Tibetan Plateau and the surrounding regions in China during 1971–2017, we calculated the annual total precipitation and extreme precipitation indices using the R ClimDex software package and explored elevation-dependent precipitation trends. The results demonstrate that the annual total precipitation increased at a rate of 6.7 mm/decade, and the contribution of extreme precipitation to total precipitation increased over time, and the climate extremes were enhanced. The annual total, seasonal precipitation, and precipitation extreme trends were observed in terms of elevation dependence in the Tibetan Plateau (TP) and the surrounding area of the Tibetan Plateau (TPS) during 1971–2017. There is growing evidence that the elevation-dependent wetting (EDWE) is complex over the TP. The trends in total precipitation have a strong dependence on elevation, and the EDWE is highlighted by the extreme precipitation indices, for example, the number of heavy precipitation days (R10) and consecutive wet days (CWD). The dependence of extreme precipitation on elevation is heterogeneous, as other extreme indices do not indicate EDWE. These findings highlight the precipitation complexity in the TP. The findings of this study will be helpful for improving our understanding of variabilities in precipitation and extreme precipitation in response to climate change and will provide support for water resource management and disaster prevention in plateaus and mountain ranges.

Funder

National Natural Science Foundation of China

the Second Tibetan Plateau Scientific Expedition and Research Program

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference66 articles.

1. Observations: Atmospheric Surface and Climate Change//Climate Change 2007: The Physical Science Basis;Trenberth,2007

2. Mountains of the World: A Global Priority;Messerli,1997

3. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3