Synthesis, Structure, and Thermal Stability of Magnesium Oxychloride 5Mg(OH)2∙MgCl2∙8H2O

Author:

Jiříčková Adéla,Lojka Michal,Lauermannová Anna-Marie,Antončík Filip,Sedmidubský David,Pavlíková Milena,Záleská Martina,Pavlík ZbyšekORCID,Jankovský OndřejORCID

Abstract

Today, low-energy and low-carbon footprint alternatives to Portland cement are searched because of huge CO2 emissions coming from Portland clinker calcination. Because of some superior properties of magnesium oxychloride cement (MOC) and the lower carbon footprint of its production, MOC became an intensively studied material with high application potential for the design and development of construction products. In this contribution, magnesium oxychloride with stoichiometry 5Mg(OH)2∙MgCl2∙8H2O (Phase 5) was prepared and characterized. The kinetics of formation and the phase composition of the material were determined using X-ray diffraction and consequent Rietveld analysis. The morphology was studied by scanning electron microscopy, and the chemical composition was determined by both energy-dispersive spectroscopy and X-ray fluorescence. Moreover, the simultaneous thermal analysis in combination with mass spectroscopy and Fourier-transform infrared spectroscopy was employed to study the thermal stability. Using mass spectroscopy, we were able to clarify the mechanism of water and hydrochloric acid release, which was not previously reported. The observed structural and chemical changes induced by exposure of studied samples to elevated temperatures were linked with the measured residual macro and micro parameters, such as bulk density, specific density, porosity, water absorption, compressive strength, and pore size distribution. The Phase 5 revealed a needle-like crystalline morphology which formed rapidly and was almost completed after 96 h, resulting in relatively high material strength. The four-day compressive strength of magnesium oxychloride cement was similar to the 28-day compressive strength of Portland cement. The thermal stability of Phase 5 was low as the observed disruptive thermal processes were completed at temperatures lower than 470 °C.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3