Abstract
Human toes are crucial for vertical jumping performance. The purpose of this study is to investigate the acute effect of hallux abduction manipulation on foot inter-segment kinematic alterations and plantar loading redistribution during the countermovement jump (CMJ). Thirteen participants were recruited to join in this experiment, for the collection of the foot inter-segment kinematics and plantar pressure data. During the take-off phase, the contact area presented a significant increase while the pressure-time integral decreased in the second metatarsal (M2), whilst the third metatarsal (M3) and fourth metatarsal (M4) decreased significantly in pressure-time integral with Toe-Manipulation (TM). During the landing phase, maximum force and peak pressure were smaller in the big toe (BT) after hallux abduction manipulation. HXFFA (hallux-forefoot angle) showed a greater pronation after manipulation in the frontal plane (0%–26% and 50%–100%) with p = 0.002 and p < 0.001. In the transverse plane, the smaller adductions were found during 62%–82% in take-off and 62%–91% in landing (p = 0.003 and p < 0.001). There was a redistributed plantar loading during the landing phase from the medial to lateral forefoot. However, a reduced hallux range of motion in the TM session was exhibited, compared to Non-Toe-Manipulation (NTM).
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献