Abstract
Formation of a hierarchy within an organization is a natural way of assigning the duties, delegating responsibilities and optimizing the flow of information. Only for the smallest companies the lack of the hierarchy, that is, a flat one, is possible. Yet, if they grow, the introduction of a hierarchy is inevitable. Most often, its existence results in different nature of the tasks and duties of its members located at various organizational levels or in distant parts of it. On the other hand, employees often send dozens of emails each day, and by doing so, and also by being engaged in other activities, they naturally form an informal social network where nodes are individuals and edges are the actions linking them. At first, such a social network seems distinct from the organizational one. However, the analysis of this network may lead to reproducing the organizational hierarchy of companies. This is due to the fact that that people holding a similar position in the hierarchy possibly share also a similar way of behaving and communicating attributed to their role. The key concept of this work is to evaluate how well social network measures when combined with other features gained from the feature engineering align with the classification of the members of organizational social network. As a technique for answering this research question, machine learning apparatus was employed. Here, for the classification task, Decision Trees, Random Forest, Neural Networks and Support Vector Machines have been evaluated, as well as a collective classification algorithm, which is also proposed in this paper. The used approach allowed to compare how traditional methods of machine learning classification, while supported by social network analysis, performed in comparison to a typical graph algorithm. The results demonstrate that the social network built using the metadata on communication highly exposes the organizational structure.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Network Diffusion Framework to Simulate Spreading Processes in Complex Networks;Big Data Mining and Analytics;2024-09
2. Clustering graph data: the roadmap to spectral techniques;Discover Artificial Intelligence;2024-01-22
3. Research on Influence Maximization Algorithm Based on Temporal Social Network;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14
4. A Comprehensive Survey on Information Diffusion Models for Social Media Text;Handbook of Research on Data Science and Cybersecurity Innovations in Industry 4.0 Technologies;2023-09-21
5. Link prediction analysis based on Node2Vec embedding technique;International Journal of Computer Applications in Technology;2023