Effect of Fiber Reinforced Polymer Tubes Filled with Recycled Materials and Concrete on Structural Capacity of Pile Foundations

Author:

Farhangi VisarORCID,Karakouzian MosesORCID

Abstract

This paper deals with analyzing the structural responses of glass-fiber-reinforced polymer (GFRP) tubes filled with recycled and concrete material for developing composite piles, as an alternative to traditional steel reinforced piles in bridge foundations. The full-scale GFRP composite piles included three structural layers, using a fiber-oriented material that was inclined longitudinally. Almost 60% of the fibers were orientated at 35° from the longitudinal direction of the pile and the rest 40 percent were oriented at 86° from the horizontal axis. The segment between the inner and outer layers was inclined 3° from the hoop direction in the tube. The behavior of the filled GFRP tubes was semi-linear and resulted in increasing the total ductility and strength of the piles. Adjusting the material’s properties, such as the EAxial, EHoop, and Poisson ratios, optimized the results. The lateral strength of the GFRP composite pile and pre-stressed piles are investigated under both axial compression and bending moment loads. Based on the conducted parametric study, the required axial and bending capacities of piles in different ranges of eccentricities can be reached using the combination of tube wall thickness and GFRP fiber percentages.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

1. Fiber-Reinforced Plastic Reinforcement for Concrete;Clarke;Concr,1999

2. Corrosion of Epoxy Coated Rebars Keys Segmental Bridge -Monroe County, Report No.88-8A;Keesler,1988

3. Federal Interest Gives Recycled Plastic Lumber a Leg Up;Lampo,1996

4. The use of permanent corrosion monitoring in new and existing reinforced concrete structures

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3