Abstract
Vision-based sensors are widely used in lateral control of autonomous vehicles, but the large computational cost of the visual algorithms often induces uneven time delays. In this paper, a hierarchical vision-based lateral control scheme is proposed, where the upper controller is designed by robust H∞-based linear quadratic regulator (LQR) algorithm to compensate sensor-induced delays, and the lower controller is based on logic threshold method, in order to achieve strong convergence of the steering angle. Firstly, the vehicle lateral model is built, and the nonlinear uncertainties induced by time delays are linearized with Taylor expansion. Secondly, the state space of the system is augmented to describe such uncertainties with polytopic inclusions, which is controlled by an H∞-based LQR controller with a low cost of online computation. Then, a lower controller is designed for the control of the steering motor. According to the results of the vehicle experiment as well as the hardware-in-the-loop (HIL) experiment, the proposed control scheme shows good performance in vehicle’s lateral control task, and exhibits better robustness compared with a conventional LQR controller. The proposed control scheme provides a feasible solution for the lateral control of autonomous driving.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献