Vibration Control of Scanning Electron Microscopes with Experimental Approaches for Performance Enhancement

Author:

Shin Yun-Ho,Moon Seok-Jun,Kim Yong-Ju,Oh Ki-Yong

Abstract

A vibration isolator embedded in precision equipment, such as a scanning electron microscope (SEM), wafer inspection equipment, and nanoimprint lithography equipment, play a critical role in achieving the maximum performance of the equipment during the fabrication of nano/micro-electro-mechanical systems. In this study, the factors that degrade the performance of SEM equipment with isolation devices are classified and discussed, and improvement measures are proposed from the viewpoints of the measured image patterns and vibrations in comparison with the relevant vibration criteria. In particular, this study quantifies the image patterns measured using SEMs, and the results are discussed along with the measured vibration. A guide for the selection of mounting equipment is presented by performing vibration analysis on the lower mount of the dual elastic mount configuration applied to the SEM, as well as the image patterns analyzed with that configuration. In addition, design modifications for the mount and its arrangement are suggested based on impact tests and numerical simulations.

Funder

Chungbuk National University

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference24 articles.

1. Highly efficient Sn/Pb binary perovskite solar cell via precursor engineering: A two-step fabrication process;Lian;Adv. Funct. Mater.,2019

2. Study on the fabrication process of MEMS bistable energy harvester based on coupled component structures;Derakhshani,2019

3. MEMS Technology: A Review

4. MEMS research is better together

5. Generic vibration criteria for vibration-sensitive equipment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3