Non-Terrestrial Networks with UAVs: A Projection on Flying Ad-Hoc Networks

Author:

Nemati MahyarORCID,Al Homssi BasselORCID,Krishnan Sivaram,Park JihongORCID,Loke Seng W.ORCID,Choi JinhoORCID

Abstract

Non-terrestrial networks (NTNs) have recently attracted elevated levels of interest in large-scale and ever-growing wireless communication networks through the utilization of flying objects, e.g., satellites and unmanned aerial vehicles/drones (UAVs). Interestingly, the applications of UAV-assisted networks are rapidly becoming an integral part of future communication services. This paper first overviews the key components of NTN while highlighting the significance of emerging UAV networks where for example, a group of UAVs can be used as nodes to exchange data packets and form a flying ad hoc network (FANET). In addition, both existing and emerging applications of the FANET are explored. Next, it provides key recent findings and the state-of-the-art of FANETs while examining various routing protocols based on cross-layer modeling. Moreover, a modeling perspective of FANETs is provided considering delay-tolerant networks (DTN) because of the intermittent nature of connectivity in low-density FANETs, where each node (or UAV) can perform store-carry-and-forward (SCF) operations. Indeed, we provide a case study of a UAV network as a DTN, referred to as DTN-assisted FANET. Furthermore, applications of machine learning (ML) in FANET are discussed. This paper ultimately foresees future research paths and problems for allowing FANET in forthcoming wireless communication networks.

Funder

the Korea government

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of Multimedia Traffic and Loss in High-Altitude Platform-Assisted VANET;2023 IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo);2023-11-13

2. Coverage Strategy for Small-Cell UAV-Based Networks in IoT Environment;Sensors;2023-10-27

3. A Survey on AI-Empowered Security Solutions for 6G;2023 14th International Conference on Information and Communication Technology Convergence (ICTC);2023-10-11

4. Low-Power IoT for Monitoring Unconnected Remote Areas;Sensors;2023-05-04

5. UAV-Based Volumetric Measurements toward Radio Environment Map Construction and Analysis;Sensors;2022-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3