Enhancing Drones for Law Enforcement and Capacity Monitoring at Open Large Events

Author:

Royo PabloORCID,Asenjo Àlex,Trujillo Juan,Çetin EnderORCID,Barrado CristinaORCID

Abstract

Police tasks related with law enforcement and citizen protection have gained a very useful asset in drones. Crowded demonstrations, large sporting events, or summer festivals are typical situations when aerial surveillance is necessary. The eyes in the sky are moving from the use of manned helicopters to drones due to costs, environmental impact, and discretion, resulting in local, regional, and national police forces possessing specific units equipped with drones. In this paper, we describe an artificial intelligence solution developed for the Castelldefels local police (Barcelona, Spain) to enhance the capabilities of drones used for the surveillance of large events. In particular, we propose a novel methodology for the efficient integration of deep learning algorithms in drone avionics. This integration improves the capabilities of the drone for tasks related with capacity control. These tasks have been very relevant during the pandemic and beyond. Controlling the number of persons in an open area is crucial when the expected crowd might exceed the capacity of the area and put humans in danger. The new methodology proposes an efficient and accurate execution of deep learning algorithms, which are usually highly demanding for computation resources. Results show that the state-of-the-art artificial intelligence models are too slow when utilised in the drone standard equipment. These models lose accuracy when images are taken at altitudes above 30 m. With our new methodology, these two drawbacks can be overcome and results with good accuracy (96% correct segmentation and between 20% and 35% mean average proportional error) can be obtained in less than 20 s.

Funder

AGAUR research agency

Ministry of Science and Education of Spain

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3