Effect of Yield Strength Distribution Welded Joint on Crack Propagation Path and Crack Mechanical Tip Field

Author:

Bi YueqiORCID,Yuan Xiaoming,Lv Jishuang,Bashir RehmatORCID,Wang ShuaiORCID,Xue HeORCID

Abstract

Due to the particularity of welding processes, the mechanical properties of welded joint materials, especially the yield strength, are unevenly distributed, and there are also a large number of micro cracks, which seriously affects the safety performance of welded joints. In this study, to analyze the effect of the uneven distribution of yield strength on the crack propagation path of welded joints, other mechanical properties and residual stresses of welded joints are ignored. In the ABAQUS 6.14 finite element software, the user-defined field (USDFLD) subroutine is used to define the unevenly distributed yield strength, and extended finite element (XFEM) is used to simulate crack propagation. In addition, the static crack finite element model of the welded joint model is established according to the crack propagation path, which is given the static crack model constant stress intensity factor load, and the influence of an uneven yield strength distribution on mechanical field is analyzed. The results show that the crack length of welded joints as well as the plastic deformation range of the crack tip in high stress areas can be reduced with the increase of yield strength along the crack propagation direction. Moreover, the crack deflects to the low yield strength side. This study provides an analytical reference for the crack path prediction of welded joints.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3