Effectiveness of the Reconstructed MODIS Typical-Angle Reflectances on Forest Biomass Estimation

Author:

Cui Lei,Sun Mei,Jiao ZitiORCID,Park Jongmin,Agca Muge,Zhang HuORCID,He Long,Dai Yiqun,Dong Yadong,Zhang XiaoningORCID,Lian Yi,Chen Lei,Zhao Kaiguang

Abstract

Multi-angle optical reflectance measurements such as those from the NASA moderate resolution imaging spectroradiometer (MODIS) are sensitive to forest 3D structures, potentially serving as a useful proxy to estimate forest structural variables such as aboveground biomass (AGB)—a potential theoretically recognized but rarely explored. In this paper, we examined the effectiveness of the reconstructed MODIS typical-angle reflectances—reflectances observed from the hotspot, darkspot, and nadir directions—for estimating forest AGB from both theoretical and practical perspectives. To gain theoretical insights, we first tested the sensitivities of typical-angle reflectances to forest AGB through simulations using the 4-scale bidirectional reflectance distribution function (BRDF) model. We then built statistical models to fit the relationship between MODIS multi-angle observations and field-measured deciduous-broadleaf/mixed-temperate forest AGB at five sites in the eastern USA, assisted by a semivariogram analysis to determine the effect of pixel heterogeneity on the MODIS–AGB relationship. We also determined the effects of terrain and season on the predictive relationships. Our results indicated that multi-angle reflectances with fewer visible shadows yielded better AGB estimates (hotspot: R2 = 0.63, RMSE = 54.28 Mg/ha; nadir: R2 = 0.55, RMSE = 59.95 Mg/ha; darkspot: R2 = 0.46, RMSE = 65.66 Mg/ha) after filtering out the effects of complex terrain and pixel heterogeneity; the MODIS typical-angle reflectances in the NIR band were the most sensitive to forest AGB. We also found strong sensitivities of estimated accuracies to MODIS image acquisition dates or season. Overall, our results suggest that the current practice of leveraging only single-angle MODIS data can be a suboptimal strategy for AGB estimation. We advocate the use of MODIS multi-angle reflectances for optical remote sensing of forest AGB or potentially other ecological applications requiring forest structure information.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3