Nature-Based Secondary Resource Recovery under Climate Change Uncertainty: A Robust Multi-Objective Optimisation Methodology

Author:

Alshehri Khaled12ORCID,Basirati Mohadese3ORCID,Sapsford Devin1ORCID,Harbottle Michael1ORCID,Cleall Peter1ORCID

Affiliation:

1. School of Engineering, Cardiff University, Cardiff CF24 3AA, UK

2. Department of Civil Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 61922, Saudi Arabia

3. Mines Saint-Etienne, Université Clermont Auvergne, INP Clermont Auvergne, CNRS, UMR 6158 LIMOS, 42023 Saint-Etienne, France

Abstract

The management of high-volume (HV) waste poses a persistent challenge in sustainable materials management and represents an untapped opportunity in circular economy models. This study proposes a conceptual decision-making framework to operationalise a novel circular economy strategy for HV waste, involving temporary storage to facilitate nature-based secondary resource recovery. Using an illustrative case study of a candidate HV waste (legacy mining waste), we apply a robust multi-objective spatial optimisation approach at a national scale, employing an exact solution approach. Our methodology integrates mixed-integer linear programming to evaluate the economic viability, social benefits, and impacts of climate change uncertainties on nature-based solutions (NbS) implementation across diverse scenarios. The results demonstrate that NbS can enhance economic feasibility by incorporating carbon sequestration and employment benefits while demonstrating resilience against climate change projections to ensure long-term sustainability. The findings suggest that although NbS can improve the circular economy of HV nationally, it is essential to assess additional ecosystem services and address multiple uncertainties for effective macro-level sustainability assessment of HV management. This study offers a robust decision-making framework for policymakers and stakeholders to plan and implement nature-based circular economy strategies for HV waste streams at a national level while effectively managing long-term planning uncertainties.

Funder

ngineering and Physical Sciences Research Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3