Setting the Optimal Laser Power for Sustainable Powder Bed Fusion Processing of Elastomeric Polyesters: A Combined Experimental and Theoretical Study

Author:

Vande Ryse RubenORCID,Edeleva Mariya,Van Stichel Ortwijn,D’hooge Dagmar R.ORCID,Pille Frederik,Fiorio RudineiORCID,De Baets Patrick,Cardon LudwigORCID

Abstract

Additive manufacturing (AM) of polymeric materials offers many benefits, from rapid prototyping to the production of end-use material parts. Powder bed fusion (PBF), more specifically selective laser sintering (SLS), is a very promising AM technology. However, up until now, most SLS research has been directed toward polyamide powders. In addition, only basic models have been put forward that are less directed to the identification of the most suited operating conditions in a sustainable production context. In the present combined experimental and theoretical study, the impacts of several SLS processing parameters (e.g., laser power, part bed temperature, and layer thickness) are investigated for a thermoplastic elastomer polyester by means of colorimetric, morphological, physical, and mechanical analysis of the printed parts. It is shown that an optimal SLS processing window exists in which the printed polyester material presents a higher density and better mechanical properties as well as a low yellowing index, specifically upon using a laser power of 17–20 W. It is further highlighted that the current models are not accurate enough at predicting the laser power at which thermal degradation occurs. Updated and more fundamental equations are therefore proposed, and guidelines are formulated to better assess the laser power for degradation and the maximal temperature achieved during sintering. This is performed by employing the reflection and absorbance of the laser light and taking into account the particle size distribution of the powder material.

Funder

Ghent University

Strategic Initiative Materials in Flanders

Publisher

MDPI AG

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D Printing of Oral Solid Dosage Forms Using Selective Laser Sintering;3D Printing of Pharmaceutical and Drug Delivery Devices;2024-05-13

2. Additive technologies use to create structures for technical fabric replacement;Journal of Industrial Textiles;2024-01

3. Volume energy density and laser power: key determinants in SLS-processed PA12 mechanical properties;The International Journal of Advanced Manufacturing Technology;2023-12-18

4. Upgrading analytical models to predict the onset of degradation in selective laser sintering;Virtual and Physical Prototyping;2023-12-06

5. Selective Laser Sintering for printing pharmaceutical dosage forms;Journal of Drug Delivery Science and Technology;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3