Analyzing the Formation and Evolution of Strike-Slip Faults and Their Controlling Effects on Hydrocarbon Migration and Charging: A Case Study of Tahe Area, Tarim Basin

Author:

Sun Zhipeng1ORCID,Yang Ruizhao1,Geng Feng12,Wang Li1,Wang Lingda1,Guo Jialiang1

Affiliation:

1. College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China

2. Petroleum Exploration & Production Research Institute of Northwest Oilfield Company Sinopec, Urumqi 830011, China

Abstract

The Ordovician strike-slip faults system in the Tahe area of the Tarim Basin provides an important opportunity for using 3D seismic data to document the structural characteristics, formation, and evolution of strike-slip faults and their relationship with oil and gas. With high-resolution 3D seismic data, the strike-slip faults are interpreted, classified, and described using the seismic coherence technique. The geometric characteristics, active periods, formation, and evolution process of strike-slip faults are analyzed, and the relationship between strike-slip faults and hydrocarbon accumulation and charging is discussed in this research project. On the map, the primary strike-slip faults on the east and west sides of the Tahe area are relatively sheared to each other, showing an “X” type conjugate fault, and the secondary strike-slip faults are scattered. In the cross-section, the primary strike-slip faults are inserted downward into the Cambrian basement and up to Devonian, and “Single line”, “Y”, “Flower”, and “Parallel lines” structures are observed. Bounded by the top of Ordovician, the deep and shallow parts are vertically segmented, with different structure styles. The switch of the structural style of strike-slip faults is attributed to principal stress. A deep “positive flower” shape of faults was developed in the mid-Ordovician period under the effect of compressive stress. Meanwhile, a shallow “negative flower” shape of faults was developed from the late Ordovician to the mid-Devonian period under tensile stress. The “Compound Flower” shape of deep “positive flower” shape and shallow “negative flower” shape formed by compressive and tensile activities has a wider fracture range, which leads to deep fluid migration and shallow karstification. There are two combinations of deep Ordovician strike-slip faults in the section: “Lower single branch-upper flower type” and “lower single branch-upper single branch type”. The primary faults of the former insertion into the Cambrian basement are associated with homologous secondary faults, while the latter has no derived secondary faults. It has an important impact on reservoir reconstruction and distribution, and the reservoir is controlled by faults. Strike-slip faults not only control the channel of oil and gas migration, but also the horizontal and vertical distribution of oil and gas. The closer the carbonate reservoir is to the primary fault, the more likely it is to form a high yield area. There are four types of oil and gas charging models controlled by strike-slip faults. In the area where the structure is high and the strike-slip faults are sheared relatively to each other, the larger the scale of faults, the more conducive it would be to oil and gas migration and accumulation. Among them, the charging model related to the primary fault has higher oil and gas migration efficiency. This research contributes to analyzing the relationship between strike-slip faults and oil and gas as well as playing a significant role in applications of oil and gas exploration in practical works.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference69 articles.

1. Architectural characterization of Ordovician fault-controlled paleokarst carbonate reservoirs, Tahe oilfield, China;Duan;Interpretation,2020

2. Fracture characterization and modeling of karsted carbonate reservoirs: A case study in Tahe oilfield, Tarim Basin (western China);Jin;Mar. Pet. Geol.,2020

3. The fault system characteristics and its controlling roles on marine carbonate hydrocarbon in the Central uplift, Tarim basin;Wu;Acta Petrol. Sin.,2012

4. Source-connectivity of strike slip fault zone and its relationship with oil and gas accumulation in Tahe-Shunbei area, Tarim Basin;Ma;Mar. Ori. Pet. Geol.,2020

5. Description of the reservoir along strike-slip fault zones in China T-Sh oilfield, Tarim Basin;Zhao;Carbonates Evaporites,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3