Experimental Study on Ultrasonic Vibration-Assisted WECDM of Glass Microstructures with a High Aspect Ratio

Author:

Chen Yan,Feng Xu,Xin Gongming

Abstract

With the rapid development of micro-electro-mechanical systems (MEMSs), the demand for glass microstructure is increasing. For the purpose of achieving high quality and stable machining of glass microstructures with a high aspect ratio, ultrasonic vibration is applied into the micro-wire electrochemical discharge machining (WECDM), which is proposed as ultrasonic vibration-assisted WECDM with a micro helical electrode. Firstly, the formation of a gas film on the surface of the helical electrode in WECDM machining is simulated, meaning the thickness of the gas film can be reduced by adding suitable ultrasonic amplitude, thus reducing the critical voltage, then the machining localization and stability were enhanced. Then, the micro helical electrode with a diameter of 100 μm is used to carry out sets of experiments that study the influence of ultrasonic amplitude, machining voltage, duty factor, pulse frequency, and feed rate on the slit width. The experimental results show that the machining stability and quality are significantly improved by adding suitable ultrasonic amplitude. When the amplitude was 5.25 μm, the average slit width was reduced to 128.63 μm with a decrease of 20.78%. Finally, with the optimized machining parameters, micro planar coil structure and microcantilever structure with a high aspect ratio were fabricated successfully on the glass plate. It is proved that ultrasonic vibration-assisted WECDM with the micro helical electrode method can meet the requirements of high aspect ratio microstructure machining for hard and brittle materials.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3