Dietary Betaine Attenuates High-Carbohydrate-Diet-Induced Oxidative Stress, Endoplasmic Reticulum Stress, and Apoptosis in Mandarin Fish (Siniperca chuatsi)

Author:

Li Hongyan1ORCID,Zeng Yanzhi12,Zheng Xinyu12,Wang Guangjun1,Tian Jingjing1ORCID,Gong Wangbao1,Xia Yun1,Zhang Kai1,Li Zhifei1,Xie Wenping1,Xie Jun1,Yu Ermeng1ORCID

Affiliation:

1. Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China

2. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China

Abstract

To investigate the impact of betaine on high-carbohydrate-diet-induced oxidative stress and endoplasmic reticulum (ER) stress, mandarin fish (Siniperca chuatsi) (23.73 ± 0.05 g) were fed with control (NC), betaine (BET), high carbohydrate (HC), and high carbohydrate + betaine (HC + BET) diets for 8 weeks. The results showed that betaine significantly promoted the growth of mandarin fish irrespective of the dietary carbohydrate levels. The HC diet induced oxidative stress, as evidenced by significantly elevated MDA levels. The HC diet significantly stimulated the mRNA levels of genes involved in ER stress (ire1, perk, atf6, xbp1, eif2α, atf4, chop), autophagy (ulk1, becn1, lc3b), and apoptosis (bax). However, betaine mitigated HC-diet-induced oxidative stress by modulating antioxidant enzymes and alleviated ER stress by regulating the mRNA of genes in the PERK-eIF2a-ATF4 pathway. Additionally, betaine significantly reduced the mRNA levels of becn1 and bax, along with the apoptosis rate, indicating a mitigating effect on autophagy and apoptosis. Overall, dietary betaine improved growth, attenuated HC-diet-induced oxidative stress and ER stress, and ultimately alleviated apoptosis in mandarin fish. These findings provide evidence for the use of betaine in aquafeeds to counter disruptive effects due to diets containing high carbohydrate levels.

Funder

Guangdong Basic and Applied Basic Research Foundation

Central Public-Interest Scientific Institution Basal Research Fund, CAFS

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3