Resveratrol Modulates the Redox Response and Bile Acid Metabolism to Maintain the Cholesterol Homeostasis in Fish Megalobrama amblycephala Offered a High-Carbohydrate Diet

Author:

Ge Yaping,Zhang LingORCID,Chen Weiliang,Sun Miao,Liu Wenbin,Li XiangfeiORCID

Abstract

This study aimed to characterize the effects of resveratrol on the redox balance, cholesterol homeostasis and bile acid metabolism of Megalobrama amblycephala offered a high-carbohydrate diet. Fish (35.0 ± 0.15 g) were fed four diets including one control diet (32% nitrogen-free extract), one high-carbohydrate diet (45% nitrogen-free extract, HC), and the HC diet supplemented with different levels (0.04%, HCR1; 0.08%, HCR2) of resveratrol for 12 weeks. The HC diet-induced redox imbalance is characterized by increased MDA content and decreased T-SOD and CAT activities in the liver. Resveratrol attenuated this by up-regulating the transcription of Cu/Zn-sod, and increasing the activities of T-SOD, CAT, and GPX. The HC diet enhanced the cholesterol synthesis, but decreased the bile acid synthesis via up-regulating both hmgcr and acat2, and down-regulating cyp7a1, thus resulting in excessive cholesterol accumulation. Resveratrol supplement decreased cholesterol synthesis, and increased cholesterol uptake in the liver by down-regulating both hmgcr and acat2, and up-regulating ldlr. It also increased bile acid synthesis and biliary excretion by up-regulating cyp7a1, and down-regulating mrp2, oatp1, and oatp4 in the hindgut, thereby decreasing cholesterol accumulation. In conclusion, resveratrol improves the cholesterol homeostasis of Megalobrama amblycephala fed a high-carbohydrate diet by modulating the redox response and bile acid metabolism.

Funder

the Postgraduate Research & Practice Innovation Program of Jiangsu Province

Independent Innovation Fund Project of Agricultural Science and Technology in Jiangsu Province

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3