Milk Fat Globule Membrane Relieves Fatigue via Regulation of Oxidative Stress and Gut Microbiota in BALB/c Mice

Author:

Zou Xiaoxiao1,Yokoyama Wallace2,Liu Xiaohui3,Wang Kai1,Hong Hui1ORCID,Luo Yongkang1,Tan Yuqing1ORCID

Affiliation:

1. Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China

2. Healthy Processed Foods Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA

3. Department of Product and Development, Hebei Dongkang Dairy Co., Ltd., Shijiazhuang 052165, China

Abstract

Milk fat globule membranes (MFGMs) are complex structures that incorporate bioactive proteins and lipids to assist in infant development. However, the antifatigue and antioxidant potentials of MFGM have not been investigated. In this study, repeated force swimming measured fatigue in male BALB/c mice fed MFGM and saline for 18 weeks. The MFGM supplementation increased the time to exhaustion by 42.7% at 6 weeks and 30.6% at 14 weeks (p < 0.05). Fatigue and injury-related biomarkers, including blood glucose, lactic acid, and lactate dehydrogenase, were ameliorated after free swimming (p < 0.05). The activity of antioxidant enzymes in blood serum increased at 18 weeks, while malondialdehyde (MDA) content decreased by 45.0% after the MFGM supplementation (p < 0.05). The Pearson correlation analysis showed a high correlation between fatigue-related indices and antioxidant levels. The increased protein expression of hepatic Nrf2 reduced the protein expression of Caspase-3 in the gastrocnemius muscle (p < 0.05). Moreover, the MFGM supplementation increased the relative abundance of Bacteroides, Butyricimonas, and Anaerostipes. Our results demonstrate that MFGM may maintain redox homeostasis to relieve fatigue, suggesting the potential application of MFGM as an antifatigue and antioxidant dietary supplement.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3