Effect of Molybdenum Disulfide on the Performance of Polyaniline Based Counter Electrode for Dye-Sensitized Solar Cell Applications

Author:

Ghafoor UsmanORCID,Aqeel Anas BinORCID,Zaman Uzair Khaleeq uz,Zahid Taiba,Noman MuhammadORCID,Ahmad Muhammad ShakeelORCID

Abstract

Dye-sensitized solar cells are gaining interest in the aerospace industry, extending their applications from solar-powered drones to origami-style space-based solar power stations due to their flexibility, light weightiness, and transparency. The major issue with its widespread commercial use is the employment of expensive Pt-based counter electrodes. In this study, an attempt has been made to replace the Pt with Polyaniline (PANI)/Molybdenum sulfide (MoS2) nanocomposite. The nanocomposites i.e., PANI-0.5wt% MoS2, PANI-2wt%MoS2, PANI-5wt%MoS2, and PANI-7wt%MoS2and PANI-9wt%MoS2, have been synthesized and compared with standard Pt-based CE. Scanning electron microscopy, transmission electron microscopy, and X-ray diffraction methods have been utilized to study both surface morphology and structural composition. Fourier transform infrared has also been used to identify redox-active functionalities. Electron impedance spectroscopy and cyclic voltammetry have been employed to study electron transfer and catalytic activity. Finally, I-V testing has been conducted using a sun simulator. A maximum efficiency of 8.12% has been observed with 7wt% MoS2 in the PANI matrix at 6 µm thickness, which is 2.65% higher compared to standard Pt-based CE (7.91%). This is due to high electronic conduction with the addition of MoS2, improved catalytic activity, and the high surface area of the PANI nano-rods.

Funder

Higher Institution Centre of Excellence (HICoE) Program Research Grant

UM Power Energy Dedicated Advanced Centre

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3