Identification of Topographic Seismic Site Periods in Sloping Terrains

Author:

Diaz-Segura Edgar Giovanny1ORCID,Oviedo-Veas Jorge Eduardo1ORCID

Affiliation:

1. Civil Engineering School, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile

Abstract

The fundamental period of a terrain is a key parameter for characterizing the maximum soil amplification. Since the 1960s, research has been conducted for sloping terrains with a focus on evaluating topographic effects. However, few studies have focused on identifying whether the site topography induces an amplification peak that is associated with a characteristic period of sloping terrain. This study conducts a parametric analysis to identify a potential amplification pattern attributable to terrain geometry, using two-dimensional finite element models subjected to the action of a dynamic signal. The periods in which amplification peaks are generated are evaluated and compared with the amplification response recorded in the free field on horizontal terrain. The results reveal that the dynamic response of sloping terrain is a combination of the response from the surrounding terrain to the sloping zone and vice versa, and a distinctive amplification peak linked to the topography is identified. A new expression is proposed to define a topographic seismic site period in terms of shear wave velocity and the total soil thickness from the bedrock to the crest of sloping terrain. This study advances the processes of characterizing the seismic response of sloping terrains by demonstrating that the topographic seismic site period is consistent regardless of the slope angle. This provides engineers with a new dimension of analysis for the practical definition of criteria to determine topographic effects in design spectra.

Funder

VRIEA-PUCV

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3