An Optimization Method for Location-Routing of Cruise Ship Cabin Materials Considering Obstacle Blocking Effects

Author:

Li Jinghua12,Huang Wenhao3ORCID,Wu Xiaoyuan4,Dong Ruipu3,Lin Pengfei3

Affiliation:

1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China

2. Sanya Nanhai Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Sanya 572024, China

3. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

4. Shanghai Waigaoqiao Shipbuilding Co., Ltd., Shanghai 200000, China

Abstract

This study examines the challenges related to the storage and distribution of cabin materials on board during the construction of cruise ships. The construction process of cruise ships involves the assembly of various cabin materials, which are temporarily stored and transported in a complex deck environment with multiple obstacles. These processes can be viewed as location-routing problems (LRPs). However, existing solutions for LRPs do not account for the obstacles commonly encountered in deck environments. Therefore, this paper introduces a new variant of LRPs, termed as the BE-LRP (blocking environment location-routing problem). Initially, by considering the optimization objectives of minimizing the distribution distance and the number of vehicles required, the paper develops an optimization model for the location-routing of on-board materials while taking obstacles into consideration. Subsequently, a method for estimating blocked distances is proposed. This method utilizes Gaussian process regression to predict blocked distances and enables the rapid estimation of distances obstructed by obstacles between different destinations. Lastly, a hybrid obstacle blocking distance processing HO-NSGAII algorithm is formulated to address the BE-LRP. Experimental comparisons demonstrate that the distribution scheme derived from this research method does not necessitate modifications to the delivery distance when compared to the traditional NSGAII algorithm, and better aligns with the actual deck conditions. With an equivalent number of delivery vehicles, the scheme results in shorter delivery distances. The delivery distance can be reduced by 3–17% under varying circumstances. These findings are advantageous for enhancing the efficiency of cruise ship construction and mitigating the impact of warehousing and distribution on construction progress.

Funder

Ministerial Civil Ship Research Project of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3